
Results Methods Future

Numerical verification of BSD
for hyperelliptics of genus 2 & 3, and beyond...

Raymond van Bommel (Universiteit Leiden)

PhD project under supervision of:
David Holmes (Leiden)

Fabien Pazuki (Bordeaux/Copenhagen)

28 March 2017



Results Methods Future

Outline

In Magma the author implemented an algorithm to numerically
verify BSD for the Jacobian J of an hyperelliptic curve C/Q of
higher genus, i.e. the algorithm calculates

lims→1(s − 1)−rL(J, s),

the real period PJ ,

the regulator RJ ,

the Tamagawa numbers cp, and

the size of J(Q)tors,

then it uses the BSD formula

lim
s→1

(s − 1)−rL(J, s) =
PJRJ · |X(J)| ·

∏
p cp

|J(Q)tors|2

to predict the size of X(J).
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List of results

The algorithm confirmed BSD (up to X) for:

all elliptic curves y2 = x3 + ax + b with a, b ∈ {−15, . . . , 15},
comparing it with existing routines in Magma;

most hyperelliptic curves of genus 2 with low conductor from
the ‘Empirical evidence’ paper (Flynn et al., 2001), comparing
it with the results from this paper;

all 300 hyperelliptics C : y2 = x5 + ax4 + bx3 + cx2 + dx + e
with a, b, c, d , e ∈ {−10, . . . , 10} and ∆(C ) ≤ 105, except for
30 examples;

29 hyperelliptics curves of genus 3 (verification up to squares)
C : y2 = x7 + ax6 + bx5 + cx4 + dx3 + ex2 + fx + g

with a, b, c, d , e, f , g ∈ {−3, . . . , 3} and ∆(C ) ≤ 107.

In all cases, except for the ones already considered by
Flynn et al., the predicted order of X(J) is 1.
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List of exceptions

The algorithm failed for

several examples for which no regular model could be
computed by Magma at some prime p of bad reduction;

for genus 3: some examples for which the conductor was too
big, which prolongs the calculation of the L-function and the
period;

the curve x5 − 4x4 + 8x3 − 8x2 + 4x − 1 for which the height
code takes too long to excute, for reasons still unknown to the
author;

the curve x5 − 3x4 + 6x3 − 6x2 + 4x − 1 for which the
L-function code takes too long to execute, for reasons still
unkown to the author.
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Runtimes

We recorded the following runtimes. Here H1 is one of the curves
from the ‘Empirical evidence’ paper with X 6= 1, conductor 125
and ∆(H1) = 516. Moreover, H2 is of genus 2 with
∆(H2) = 62720, and H3 is of genus 3 with ∆(H3) = −1523712.

H1 (rk 0) H2 (rk 1) H3 (rk 1)

lims→1(s − 1)−rL(J, s) 8.930 7.520 173.5

period PJ 36.33 34.34 64.46

regulator Rj 0.930 142.6 294.23

Tamagawa numbers cp 0.040 0.040 0.070

|J(Q)tors| 0.130 0.010 N/A

Runtime in seconds
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How to calculate lims→1(s − 1)−rL(J , s)?

The algebraic rank of J can be computed by Magma, by computing
an upper bound, using 2-Selmer groups, and a lower bound, by
looking for points. In practice, these bounds seemed to agree for
our examples.

The L-function and its derivatives can be evaluated at s = 1 using
code by Tim and Vladimir Dokchitser (and possibly others). This
routine uses the RegularModel routine in Magma.

Problem: the runtime seems to increase quickly as the conductor
increases, as it uses the functional equation for the evaluation.

Problem: the algorithm assumes the existence of an analytic
continuation together with a functional equation, but does not
prove this.
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How to calculate the real period PJ? (1/2)

For a standard basis dx
y ,

xdx
y , . . . , x

g−1dx
y of the differentials, and for

a symplectic basis γ1, . . . , γ2g of H1(J(C),Z) calculated by Magma,
there is a Magma routine BigPeriodMatrix due to Van Wamelen
that calculates the matrix

M =
(∫

γi
x j−1dx

y

)
i=1,...,2g , j=1,...g

.

The columns of M + M span a lattice inside Rg . The covolume of
this lattice is the real period, up to a certain correction factor.

The differential dx
y ∧ . . . ∧

xg−1dx
y is not a Néron differential. To

correct for this, we need to find how far it is away from being a
Néron differential.



Results Methods Future

How to calculate the real period PJ? (2/2)

For the primes of good reduction, it is alright, but for the primes p
of bad reduction we do the following calculation (cf. Flynn et al.):

1. we calculate a regular model C/Z(p);

2. for each i = 0, . . . , g − 1 and each irreducible component E of
the special fibre CFp , we check if x idx

y has a pole on E and
multiply by p if necessary;

3. for each linear combination D =
∑g−1

i=0 ci
x idx
y , with

ci ∈ {0, . . . , p− 1} not all zero, and each component E of CFp ,
we check if D vanishes on E and adjust the basis if necessary.

Problem: step 3 takes a lot of time: for pg differentials a
non-trivial calculation had to be done. It should not be
too hard to overcome this problem.
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How to calculate the regulator RJ?

We calculate the algebraic rank as before and try to find
generators for the free part of J(Q)tors.

For higher genus hyperelliptic curves, the height pairing can then
be calculated using techniques from Arakelov theory. The
algorithm and its implementation are due to Holmes and Müller.

Problem: the bounds up to which height we need to find all
points might be a bit big. In practice, the heights needed seem to
be very small. In theory, it might happen that we get an error
factor, which is a rational square.

Problem: the higher the genus gets, the harder it is find all points
of low height. For genus 2, it is very doable, for higher genus it
gets impractical. For genus 3, we at least always found a
subgroup of full rank.
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How to calculate the Tamagawa numbers cp?

To calculate the Tamagawa number for a bad prime p, we
compute a regular model C/Z(p) of C . The Magma code gives an
explicit respresentation with charts and equations, which is a bit
cumbersome to access.

We calculate the action of the absolute Galois group on the
component group, by calculating the action of the Frobenius on
the explicit equations.

Then the Tamagawa number is the size of the Galois-invariant
subgroup of the component group.
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How to calculate |J(Q)tors|?

Here we combine the following two approaches. For genus 2, this
is already implemented in Magma.

As before, we calculate the points in J(Q) up to a certain height
and look for torsion points. This gives a lower bound for the
torsion subgroup.

We calculate the reduction Jp of J modulo a bunch of small primes
p of good reduction. The prime-to-p-part of the torsion group
injects into Jp(Fp). This gives an upper bound.

In most cases, the upper and lower bound coincided. In those cases
it did not (genus 3), this might induce an error factor equal to a
rational square in the BSD formula.
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Ideas for the future

In the future, we hope to extend these methods to numerically
verify (possibly up to squares, and up to X) BSD for some
smooth plane quartics.

Right now, there are a lot of curves for which the verification
cannot be done, because Magma cannot compute a regular model
for these. This happens when a component in the special fibre has
to be blown up and this component is not defined over Fp.

Another idea could be to extend the RegularModel code to also
cope with these cases. The author did not extensively research the
feasibility of this suggestion.
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The end

Questions / comments / discussion ?
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